(4x^3+8x^2-10x)/2x

Simple and best practice solution for (4x^3+8x^2-10x)/2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x^3+8x^2-10x)/2x equation:


x in (-oo:+oo)

x*((4*x^3+8*x^2-(10*x))/2) = 0

x*((4*x^3+8*x^2-10*x)/2) = 0

(x*(4*x^3+8*x^2-10*x))/2 = 0

4*x^3+8*x^2-10*x = 0

2*x*(2*x^2+4*x-5) = 0

2*x^2+4*x-5 = 0

DELTA = 4^2-(-5*2*4)

DELTA = 56

DELTA > 0

x = (56^(1/2)-4)/(2*2) or x = (-56^(1/2)-4)/(2*2)

x = (2*14^(1/2)-4)/4 or x = (-2*14^(1/2)-4)/4

2*x*(x-((-2*14^(1/2)-4)/4))*(x-((2*14^(1/2)-4)/4)) = 0

(2*x*x*(x-((-2*14^(1/2)-4)/4))*(x-((2*14^(1/2)-4)/4)))/2 = 0

( 2*x )

2*x = 0 // : 2

x = 0

( x-((-2*14^(1/2)-4)/4) )

x-((-2*14^(1/2)-4)/4) = 0 // + (-2*14^(1/2)-4)/4

x = (-2*14^(1/2)-4)/4

( x-((2*14^(1/2)-4)/4) )

x-((2*14^(1/2)-4)/4) = 0 // + (2*14^(1/2)-4)/4

x = (2*14^(1/2)-4)/4

( x )

x = 0

x in { 0, (-2*14^(1/2)-4)/4, (2*14^(1/2)-4)/4, 0 }

See similar equations:

| 4(a-3)=24 | | 4x-173+4x+x=1762 | | 4b+7=b-8 | | 3x+4-6+11=x+5+6 | | -(5-6k)=-40-3k | | x[3/4]-6=x | | 7p+7=6p+13 | | (x-8)=55 | | (3x-33)=(2x+28) | | 7(-3/7) | | 7x-3/7 | | -2p-29=-3(8p-5) | | 9x+1/2+2x+4/5=4 | | x^5-2x^3-x=0 | | 3d+3h=180 | | (5x+12)=(3x+30) | | (3x+40)=(5x+12) | | 5w(7w-5)(5w-1)=0 | | -9y=108 | | (3x-5)=(7x+15) | | 11+3m=6-2m | | -24p=0 | | -7u=-14 | | 13z=91 | | b^5=11.2 | | 64x^2-48x+92=0 | | 1.6-2.4d=-8 | | 7/15+5/18= | | (4x+5)=(3x+35) | | 44/784x^2+x+6 | | 2x^2+4(x-2)=9 | | 7+3(x-2)=5x |

Equations solver categories